There is another useful system of units, besides the $\mathrm{SI/MKS}$. A system, called the $\mathrm{CGS}$ (centimeter-gramsecond) system. In this system Coloumb’s law is given by $\vec F = \frac{{Qq}}{{{r^2}}} \cdot \hat r$ where the distance $r$ is measured in $cm\left( { = {{10}^{ - 2}}m} \right)$ , $\mathrm{F}$ in dynes $\left( { = {{10}^{ - 5}}N} \right)$  and the charges in electrostatic units $(\mathrm{es\,unit}$), where $1$ $\mathrm{esu}$ of charge $ = \frac{1}{{[3]}} \times {10^{ - 9}}C$. The number ${[3]}$ actually arises from the speed of light in vacuum which is now taken to be exactly given by $c = 2.99792458 \times {10^8}m/s$. An approximate value of $c$ then is $c = 3 \times {10^8}m/s$.

$(i)$ Show that the coloumb law in $\mathrm{CGS}$ units yields $1$ $\mathrm{esu}$ of charge = $= 1\,(dyne)$ ${1/2}\,cm$. Obtain the dimensions of units of charge in terms of mass $\mathrm{M}$, length $\mathrm{L}$ and time $\mathrm{T}$. Show that it is given in terms of fractional powers of $\mathrm{M}$ and $\mathrm{L}$ .

$(ii)$ Write $1$ $\mathrm{esu}$ of charge $=xC$, where $x$ is a dimensionless number. Show that this gives $\frac{1}{{4\pi { \in _0}}} = \frac{{{{10}^{ - 9}}}}{{{x^2}}}\frac{{N{m^2}}}{{{C^2}}}$ with $x = \frac{1}{{[3]}} \times {10^{ - 9}}$ we have, $\frac{1}{{4\pi { \in _0}}} = {[3]^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$ or $\frac{1}{{4\pi { \in _0}}} = {\left( {2.99792458} \right)^2} \times {10^9}\frac{{N{m^2}}}{{{C^2}}}$ (exactly).

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$

$\mathrm{F}=\frac{Q q}{r^{2}}$

$\therefore 1 \text { dyne }=\frac{(1 \text { esu charge })^{2}}{(1 \mathrm{~cm})^{2}}$

$\therefore 1 \text { esu }=(1 \text { dyne })^{1 / 2} \times 1 \mathrm{~cm}$

$=\mathrm{F}^{1 / 2} \mathrm{~L}$

$\therefore$ Dimensional formula of $1 \mathrm{esu}$,

$=\left[M^{1} L^{1} \mathrm{~T}^{-2}\right]^{1 / 2} \times\left[\mathrm{L}^{1}\right]$

$=\left[M^{1 / 2} L^{3 / 2} \mathrm{~T}^{-1}\right]$

Hence, in dimensional formula of esu charge, power of $M$ is $\frac{1}{2}$ and of $L$ is $\frac{3}{2}$, which is noninteger.

$(ii)$ Suppose $1$ esu $=x \mathrm{C}$, where $x$ is a dimensionless number. The force between two charges of $1$ esu magnitude is

$10^{-5} \mathrm{~N}$ $\left(=1\right.$ dyne) when they are at distance $10^{-2} \mathrm{~m}(=1 \mathrm{~cm})$.

$\therefore \mathrm{F}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{x^{2}}{\left(10^{-2}\right)^{2}}$

$\therefore 10^{-5} \mathrm{~N}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{x^{2}}{\left(10^{-2}\right)^{2}}$

$\therefore 1 \text { dyne }=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{x^{2}}{\left(10^{-2}\right)^{2}}$

$\therefore \frac{1}{4 \pi \epsilon_{0}}=\frac{10^{-5} \mathrm{~N} \times 10^{-4} \mathrm{~m}^{2}}{x^{2}}$

$=\frac{10^{-9}}{x^{2}} \cdot \frac{\mathrm{N} m^{2}}{\mathrm{C}^{2}}$

Similar Questions

Figure represents a crystal unit of cesium chloride, $\mathrm{CsCl}$. The cesium atoms, represented by open circles are situated at the corners of a cube of side $0.40\,\mathrm{nm}$, whereas a $\mathrm{Cl}$ atom is situated at the centre of the cube. The $\mathrm{Cs}$ atoms are deficient in one electron while the $\mathrm{Cl}$ atom carries an excess electron.

$(i)$ What is the net electric field on the $\mathrm{Cl}$ atom due to eight $\mathrm{Cs}$ atoms ?

$(ii)$ Suppose that the $\mathrm{Cs}$ atom at the corner $A$ is missing. What is the net force now on the $\mathrm{Cl}$ atom due to seven remaining $\mathrm{Cs}$ atoms ?

A total charge $Q$ is broken in two parts ${Q_1}$ and ${Q_2}$ and they are placed at a distance $R$ from each other. The maximum force of repulsion between them will occur, when

Two identical charged spheres suspended from a common point by two massless strings of lengths $l,$ are initially at a distance $d\;(d < < l)$ apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity $v.$ Then $v$ varies as a function of the distance $x$ between the spheres, as 

  • [AIEEE 2011]

Force between two identical spheres charged with same charge is $F$. If $50\%$ charge of one sphere is transferred to second sphere then new force will be

The ratio of gravitational force and electrostatic repulsive force between two electrons is approximately (gravitational constant $=6.7 \times 10^{-11} \,Nm ^2 / kg ^2$, mass of an electron $=9.1 \times 10^{-31} \,kg$, charge on an electron $=1.6 \times 10^{-19} C$ )

  • [KVPY 2020]